Central Limit Theorem &

Normal Distribution

What is a **Sampling Distribution**?

It is a probability distribution of a statistic obtained through a large number of samples drawn from a specific population.

What is **Statistic**?

Statistic is any numerical measurement related to a sample.

Here are a couple of examples of statistics:

- Sample mean \overline{X} .
- Sample proportion \hat{p} .

What is the **Central Limit Theorem**?

It is the conclusion of the sampling distribution of \bar{x} from any population with mean μ and variance σ^2 when random samples of size *n* are drawn from.

The sampling distribution of \bar{x}

 is approximately normally distributed with

• mean
$$\mu_{\bar{x}} = \mu$$
,
• variance $\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}$, and
• standard deviation $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

Consider a discrete population consisting of values 2, 4, 6, 8 and 10.

- Find μ and σ^2 .
- List all possible samples of size 2 with replacement.
- Find the mean of each samples.
- Construct a table that contains the mean of each samples and the probability of each mean.
- Draw the probability histogram using the mean of each sample and the probability of each mean.
- Show that the probability histogram has a shape of a normal curve.

Solution:

Find μ and σ^2 .

We can simply enter these values in L_1 and perform basic statistical computations.

$$\Rightarrow \mu =$$
 6, $\sigma =$ 2.828, and $\sigma^2 =$ 8

List all possible samples of size 2 with replacement.

2,2	4,2	6,2	8,2	10,2
2,4	4,4	6,4	8,4	10,4
2,6	4,6	6,6	8,6	10,6
2,8	4,8	6,8	8,8	10,8
2,10	4,10	6,10	8,10	10,10

Find the mean of each samples.

2	3	4	5	6
3	4	5	6	7
4	5	6	7	8
5	6	7	8	9
6	7	8	9	10

Construct a table that contains the mean of each samples and the probability of each mean.

x	2	3	4	5	6	7	8	9	10
$P(\bar{x})$	$\frac{1}{25}$	2 25	3 25	4 25	5 25	4 25	3 25	2 25	$\frac{1}{25}$

Central Limit Theorem

Solution Continued:

Central Limit Theorem

Solution Continued:

Show that the probability histogram has a shape of a normal curve.

The probability distribution chart below displays sampling distribution of \bar{x} with samples of size 2 from our last example.

x	2	3	4	5	6	7	8	9	10
$P(\bar{x})$	$\frac{1}{25}$	$\frac{2}{25}$	$\frac{3}{25}$	$\frac{4}{25}$	$\frac{5}{25}$	$\frac{4}{25}$	$\frac{3}{25}$	$\frac{2}{25}$	$\frac{1}{25}$

Use the discrete probability distribution

- to find $\mu_{\bar{x}}$, $\sigma_{\bar{x}}$,
- the exact value of $\sigma_{\overline{x}}^2$, and
- use these results to verify the conclusion of the Central Limit Theorem.

Solution:

▶ Using L_1 and L_2 for \bar{x} and $P(\bar{x})$ respectively. Now we can perform basic statistical computation, we get

 $\Rightarrow \mu_{\bar{x}} = 6 \& \sigma_{\bar{x}} = 2$

• Now we simply use the formula $\sigma = \sqrt{\sigma^2}$.

$$\Rightarrow \sigma_{\bar{x}}^2 = 2^2 = 4$$

 Use these results to verify the conclusion of the Central Limit Theorem.

We can verify that
$$\mu_{\bar{x}}=\mu=$$
 6, and $\sigma_{\bar{x}}^2=rac{\sigma^2}{n}=rac{8}{2}=$ 4.

Use sampling distribution of \bar{x} when samples of size 16 are selected at random from a normally distributed population with mean 375 and variance 100.

Solution:

Using the Central Limit Theorem,

Find
$$\mu_{\bar{x}}$$
. $\Rightarrow \mu_{\bar{x}} = \mu = 375$
Find $\sigma_{\bar{x}}^2$. $\Rightarrow \sigma_{\bar{x}}^2 = \frac{\sigma^2}{n} = \frac{100}{16} = 6.25$

Use sampling distribution of \bar{x} when samples of size 10 are selected at random from a normally distributed population with mean 82 and standard deviation 7.5.

Find $\sigma_{\bar{x}}$.

Solution:

Using the Central Limit Theorem,

• Find
$$\mu_{\bar{x}}$$
. $\Rightarrow \mu_{\bar{x}} = \mu = \boxed{82}$
• Find $\sigma_{\bar{x}}$. $\Rightarrow \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{7.5}{\sqrt{10}} \approx \boxed{2.372}$.

Z score & \bar{x} Sampling Distribution

we know that $z = \frac{x - \mu}{\sigma}$, now we can replace x with \bar{x} , μ with $\mu_{\bar{x}}$, σ with $\sigma_{\bar{x}}$, and simplify using the central limit theorem.

$$z = \frac{x - \mu}{\sigma}$$
$$= \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}}$$
$$= \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Example:

Use sampling distribution of \bar{x} when samples of size 36 are selected at random from a normally distributed population with mean 6250 and standard deviation 275.

Find the *z* score for $\bar{x} = 6450$.

Find the *z* score for $\bar{x} = 6200$.

Solution:

Using the formula
$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
,
Find the *z* score for $\overline{x} = 6450$. $\Rightarrow z = \frac{6450 - 6250}{\frac{275}{\sqrt{36}}} \approx \frac{4.364}{\frac{275}{\sqrt{36}}}$
Find the *z* score for $\overline{x} = 5820$. $\Rightarrow z = \frac{6200 - 6250}{\frac{275}{\sqrt{36}}} \approx \frac{-1.091}{\frac{275}{\sqrt{36}}}$

The average life of a certain blender is 5.1 years with a standard deviation of 1.2 years. Assume the lives of these blenders are normally distributed.

- Find the probability that a mean life of a random sample of 9 such blenders fall between 4.5 and 5.5 years.
- Find the value of \bar{x} that separates the top 10% from the rest of the means computed from random samples of size 9.

Solution:

We have a normal probability distribution with $\mu = 5.1$, $\sigma = 1.2$, and random sample of size 9. We can use the central limit theorem to compute $\mu_{\bar{x}} = \mu = 5.1$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{1.2}{\sqrt{9}} = 0.4$

Find the probability that that a mean life of a random sample of 9 such blenders fall between 4.5 and 5.5 years.

 $P(4.5 < \bar{x} < 5.5) = \text{normaldf}(4.5, 5.5, 5.1, 0.4) = 0.7745$

Find the value of x̄ that separates the top 10% from the rest of the means computed from random samples of size 9.
 ⇒ P(x̄ > k) = 0.1

Suppose the hourly wages of all workers in a manufacturer company have a normal distribution with a mean of \$15.50 and a standard deviation of \$2.75. If we randomly select a sample of 10 workers from this company, find the probability that their mean hourly wages is

- less than \$14.25.
- more than \$16.50.

Solution:

We have a normal probability distribution with $\mu = 15.50$, $\sigma = 2.75$, and random sample of size 10. We can use the central limit theorem to compute $\mu_{\bar{x}} = \mu = 15.50$ and $\sigma = 2.75$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{2.75}{\sqrt{10}} \approx \boxed{0.87}$$

 $\Rightarrow P(\bar{x} > 16.50)$

 $P(\bar{x} = 16.50) = \text{normalcdf}(16.50, E99, 15.50, 0.87) \approx 0.125$