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What is a Sampling Distribution?

It is a probability distribution of a statistic obtained through a
large number of samples drawn from a specific population.

What is Statistic?

Statistic is any numerical measurement related to a sample.

Here are a couple of examples of statistics:

◮ Sample mean x̄ .

◮ Sample proportion p̂.
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What is the Central Limit Theorem?

It is the conclusion of the sampling distribution of x̄ from any
population with mean µ and variance σ

2 when random samples of
size n are drawn from.

The sampling distribution of x̄

◮ is approximately normally distributed

with

◮ mean µx̄ = µ,

◮ variance σ
2

x̄
=

σ2

n
, and

◮ standard deviation σx̄ =
σ√
n
.
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Example:

Consider a discrete population consisting of values 2, 4, 6, 8 and 10.

◮ Find µ and σ
2.

◮ List all possible samples of size 2 with replacement.

◮ Find the mean of each samples.

◮ Construct a table that contains the mean of each samples and
the probability of each mean.

◮ Draw the probability histogram using the mean of each
sample and the probability of each mean.

◮ Show that the probability histogram has a shape of a normal
curve.
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Solution:

◮ Find µ and σ
2.

We can simply enter these values in L1 and perform basic
statistical computations.

⇒ µ = 6,σ = 2.828, and σ
2 = 8

◮ List all possible samples of size 2 with replacement.

2,2 4,2 6,2 8,2 10,2

2,4 4,4 6,4 8,4 10,4

2,6 4,6 6,6 8,6 10,6

2,8 4,8 6,8 8,8 10,8

2,10 4,10 6,10 8,10 10,10
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Solution Continued:

◮ Find the mean of each samples.

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9 10

◮ Construct a table that contains the mean of each samples and
the probability of each mean.

x̄ 2 3 4 5 6 7 8 9 10

P(x̄)
1

25

2

25

3

25

4

25

5

25

4

25

3

25

2

25

1

25
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Solution Continued:

◮ Draw the probability histogram using x̄ and P(x̄).
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Solution Continued:

◮ Show that the probability histogram has a shape of a normal
curve.
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Example:

The probability distribution chart below displays sampling
distribution of x̄ with samples of size 2 from our last example.

x̄ 2 3 4 5 6 7 8 9 10

P(x̄)
1

25

2

25

3

25

4

25

5

25

4

25

3

25

2

25

1

25

Use the discrete probability distribution

◮ to find µx̄ , σx̄ ,

◮ the exact value of σ2

x̄
, and

◮ use these results to verify the conclusion of the Central Limit
Theorem.
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Solution:

◮ Using L1 and L2 for x̄ and P(x̄) respectively. Now we can
perform basic statistical computation, we get

⇒ µx̄ = 6 & σx̄ = 2

◮ Now we simply use the formula σ =
√
σ2.

⇒ σ
2

x̄
= 22 = 4

◮ Use these results to verify the conclusion of the Central Limit
Theorem.

We can verify that µx̄ = µ = 6, and σ
2

x̄
=

σ2

n
=

8

2
= 4.



Elementary Statistics Central Limit Theorem

Example:

Use sampling distribution of x̄ when samples of size 16 are selected
at random from a normally distributed population with mean 375
and variance 100.

◮ Find µx̄ .

◮ Find σ
2

x̄
.

Solution:

Using the Central Limit Theorem,

◮ Find µx̄ . ⇒ µx̄ = µ = 375

◮ Find σ
2

x̄
. ⇒ σ

2

x̄
=

σ2

n
=

100

16
= 6.25
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Example:

Use sampling distribution of x̄ when samples of size 10 are selected
at random from a normally distributed population with mean 82
and standard deviation 7.5.

◮ Find µx̄ .

◮ Find σx̄ .

Solution:

Using the Central Limit Theorem,

◮ Find µx̄ . ⇒ µx̄ = µ = 82

◮ Find σx̄ . ⇒ σx̄ =
σ√
n
=

7.5√
10

≈ 2.372 .
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Z score & x̄ Sampling Distribution

we know that z =
x − µ

σ
, now we can replace x with x̄ , µ with µx̄ ,

σ with σx̄ , and simplify using the central limit theorem.

z =
x − µ

σ

=
x̄ − µx̄

σx̄

=
x̄ − µ

σ√
n



Elementary Statistics Central Limit Theorem

Example:

Use sampling distribution of x̄ when samples of size 36 are selected
at random from a normally distributed population with mean 6250
and standard deviation 275.

◮ Find the z score for x̄ = 6450.

◮ Find the z score for x̄ = 6200.

Solution:

Using the formula z =
x̄ − µ

σ√
n

,

◮ Find the z score for x̄ = 6450. ⇒ z =
6450− 6250

275√
36

≈ 4.364

◮ Find the z score for x̄ = 5820. ⇒ z =
6200− 6250

275√
36

≈ −1.091
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Example:

The average life of a certain blender is 5.1 years with a standard
deviation of 1.2 years. Assume the lives of these blenders are
normally distributed.

◮ Find the probability that a mean life of a random sample of 9
such blenders fall between 4.5 and 5.5 years.

◮ Find the value of x̄ that separates the top 10% from the rest
of the means computed from random samples of size 9.

Solution:

We have a normal probability distribution with µ = 5.1, σ = 1.2,
and random sample of size 9. We can use the central limit theorem

to compute µx̄ = µ = 5.1 and σx̄ =
σ√
n
=

1.2√
9
= 0.4
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Solution Continued:

◮ Find the probability that that a mean life of a random sample
of 9 such blenders fall between 4.5 and 5.5 years.

⇒ P(4.5 < x̄ < 5.5)

|
5.54.5 µx̄ = 5.1

σx̄ = 0.4

P(4.5 < x̄ < 5.5) = normaldf(4.5, 5.5, 5.1, 0.4) = 0.7745
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Solution Continued:

◮ Find the value of x̄ that separates the top 10% from the rest
of the means computed from random samples of size 9.

⇒ P(x̄ > k) = 0.1

|
kµx̄ = 5.1

σx̄ = 0.4

90% 10%

x̄ = k = P90 = invNorm(0.9, 5.1, 0.4) ≈ 5.6
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Example:

Suppose the hourly wages of all workers in a manufacturer
company have a normal distribution with a mean of $15.50 and a
standard deviation of $2.75. If we randomly select a sample of 10
workers from this company, find the probability that their mean
hourly wages is

◮ less than $14.25.

◮ more than $16.50.

Solution:

We have a normal probability distribution with µ = 15.50,
σ = 2.75, and random sample of size 10. We can use the central
limit theorem to compute µx̄ = µ = 15.50 and

σx̄ =
σ√
n
=

2.75√
10

≈ 0.87
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Solution Continued:

◮ less than $14.25.

⇒ P(x̄ < 14.25)

|
14.25 µx̄ = 15.50

σx̄ = 0.87

P(x̄ < 14.25) = normaldf(−E99, 14.25, 15.5, 0.87) = 0.0754
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Solution Continued:

◮ more than $16.50.

⇒ P(x̄ > 16.50)

|
16.50µx̄ = 15.50

σx̄ = 0.87

P(x̄ > 16.50)

P(x̄ = 16.50) = normalcdf(16.50,E99, 15.50, 0.87) ≈ 0.125


